
Chapter 1

Handling exceptions

All applications have to deal with exceptional situations. Arithmetic errors
may occur (such as division by zero), unexpected situations may arise (file
not found), or resources may be exhausted (network down, disk full, etc.).
The old-fashioned solution is to have operations that fail return a special
error code; this means that client code must check the return value of each
operation, and take special action to handle errors.

Modern programming languages, including Smalltalk, instead offer a
dedicated exception-handling mechanism that greatly simplifies the way in
which exceptional situations are signaled and handled. Before the develop-
ment of the ANSI Smalltalk standard in 1996, several exception handling
mechanisms existed, largely incompatible with each other. Pharo’s excep-
tion handling follows the ANSI standard, with some embellishments; we
present it in this chapter from a user perspective.

The basic idea behind exception handling is that client code does not clut-
ter the main logic flow with checks for error codes, but specifies instead an
exception handler to “catch” exceptions. When something goes wrong, instead
of returning an error code, the method that detects the exceptional situation
interrupts the main flow of execution by signaling an exception. This does
two things: it captures essential information about the context in which the
exception occurred, and transfers control to the exception handler, written
by the client, which decides what to do about it. The “essential information
about the context” is saved in an Exception object; various classes of Exception
are specified to cover the varied exceptional situations that may arise.

Pharo’s exception-handling mechanism is particularly expressive and
flexible, covering a wide range of possibilities. Exception handlers can be
used to ensure that certain actions take place even if something goes wrong,
or to take action only if something goes wrong. Like everything in Smalltalk,
exceptions are objects, and respond to a variety of messages. When an excep-

2 Handling exceptions

tion is caught by a handler, there are many possible responses: the handler
can specify an alternative action to perform; it can ask the exception object
to resume the interrupted operation; it can retry the operation; it can pass the
exception to another handler; or it can reraise a completely different excep-
tion.

With the help of a series of examples, we shall explore all of these pos-
sibilities, and we shall also take a brief look into the internal mechanics of
exceptions and exception handlers. However, before we do that, we need
to stop and think for a moment about the consequence of adding exceptions
into a language: we can no longer be sure that a message send will give us an
answer. In other words, once we have exceptions, any message send has the
potential not to return to the sender: it may fail.

1.1 Ensuring execution

The ensure: message can be sent to a block to make sure that, even if the block
fails (e.g., raises an exception) the argument block will still be executed:

anyBlock ensure: ensuredBlock "ensuredBlock will run even if anyBlock fails"

Consider the following example, which creates an image file from a
screenshot taken by the user:

| writer |
writer := GIFReadWriter on: (FileStream newFileNamed: 'Pharo.gif').
[writer nextPutImage: (Form fromUser)]

ensure: [writer close]

This code ensures that the writer file handle will be closed, even if an error
occurs in Form fromUser or while writing to the file.

Here is how it works in more detail. The nextPutImage: method of the class
GIFReadWriter converts a form (i.e., an instance of the class Form, representing
a bitmap image) into a GIF image. This method writes into a stream which
has been opened on a file. The nextPutImage: method does not close the stream
it is writing to, therefore we should be sure to close the stream even if a prob-
lem arises while writing. This is achieved by sending the message ensure: to
the block that does the writing. In case nextPutImage: fails, control will flow
into the block passed to ensure:. If it does not fail, the ensured block will still
be executed. So, in either case, we can be sure that writer is closed.

Here is another use of ensure:, in class Cursor:

Handling non-local returns 3

Cursor»showWhile: aBlock
"While evaluating the argument, aBlock,
make the receiver be the cursor shape."
| oldcursor |
oldcursor := Sensor currentCursor.
self show.
↑aBlock ensure: [oldcursor show]

The argument [oldcursor show] is evaluated whether or not aBlock signals
an exception. Note that the result of ensure: is the value of the receiver, not
that of the argument.

[1] ensure: [0] −→ 1 "not 0"

1.2 Handling non-local returns

The message ifCurtailed: is typically used for “cleaning” actions. It is similar
to ensure:, but instead of ensuring that its argument block is evaluated even
if the receiver terminates abnormally, ifCurtailed: does so only if the receiver
fails or returns.

In the following example, the receiver of ifCurtailed: performs an early re-
turn, so the following statement is never reached. In Smalltalk, this is re-
ferred to as a non-local return. Nevertheless the argument block will be exe-
cuted.

[↑ 10] ifCurtailed: [Transcript show: 'We see this'].
Transcript show: 'But not this'.

In the following example, we can see clearly that the argument to
ifCurtailed: is evaluated only when the receiver terminates abnormally.

[Error signal] ifCurtailed: [Transcript show: 'Abandoned'; cr].
Transcript show: 'Proceeded'; cr.

Open a transcript and evaluate the code above in a workspace. When the pre-
debugger windows opens, first try selecting Proceed and then Abandon . Note that
the argument to ifCurtailed: is evaluated only when the receiver terminates abnor-
mally. What happens when you select Debug ?

Here are some examples of ifCurtailed: usage: the text of the Transcript show:
describes the situation:

[↑ 10] ifCurtailed: [Transcript show: 'This is displayed'; cr]

4 Handling exceptions

[10] ifCurtailed: [Transcript show: 'This is not displayed'; cr]

[1 / 0] ifCurtailed: [Transcript show: 'This is displayed after selecting Abandon in the
debugger'; cr]

Although ifCurtailed: and ensure: are implemented as primitives in Pharo,
in principle ifCurtailed: could be implemented using ensure: as follows:

ifCurtailed: curtailBlock
| result curtailed |
curtailed := true.
[result := self value.

curtailed := false
] ensure: [curtailed ifTrue: [curtailBlock value]].
↑ result

In a similar fashion, ensure: could be implemented using ifCurtailed: as fol-
lows:

ensure: ensureBlock
| result |
result := self ifCurtailed: ensureBlock.
"If we reach this point, then the receiver has not been curtailed,
so ensureBlock still needs to be evaluated"
ensureBlock value.
↑ result

Both ensure: and ifCurtailed: are very useful for making sure that important
“cleanup” code is executed, but are not by themselves sufficient for handling
all exceptional situations. Now let’s look at a more general mechanism for
handling exceptions.

1.3 Exception handlers

The general mechanism is provided by the message on:do:. It looks like this:

aBlock on: exceptionClass do: handlerAction

aBlock is the code that detects an abnormal situation and signals an exception;
it is called the protected block. handlerAction is the block that is evaluated if an
exception is signaled; it is called the exception handler. exceptionClass defines
the class of exceptions that handlerAction will be asked to handle.

The beauty of this mechanism lies in the fact that the protected block can
be written in a straightforward way, without regard to any possible errors. A
single exception handler is responsible for taking care of anything that may
go wrong.

Error codes — don’t do this! 5

Consider the following example, where we want to copy the contents
of one file to another. Although several file-related things could go wrong,
with exception handling we simply write a straight-line method, and define
a single exception handler for the whole transaction:

source := 'log.txt'.
destination := 'log−backup.txt'.
[fromStream := FileDirectory default oldFileNamed: source.

[toStream := FileDirectory default newFileNamed: destination.
[toStream nextPutAll: fromStream contents]

ensure: [toStream close]]
ensure: [fromStream close]]

on: FileStreamException
do: [:ex | UIManager default inform: 'Copy failed −− ', ex description].

If any exception concerning FileStreams is raised, the handler block (the
block after do:) is executed with the exception object as its argument. Our
handler code alerts the user that the copy has failed, and delegates to the
exception object ex the task of providing details about the error. Note the
two nested uses of ensure: to make sure that the two file streams are closed,
whether or not an exception occurs.

It is important to understand that the block that is the receiver of the mes-
sage on:do: defines the scope of the exception handler. This handler will be
used only if the receiver (i.e., the protected block) has not completed. Once
completed, the exception handler will not be used. Moreover, a handler is
associated exclusively with the kind of exception specified as the first argu-
ment to on:do:. Thus, in the previous example, only a FileStreamException (or a
more specific variant thereof) can be handled.

1.4 Error codes — don’t do this!

Without exceptions, one (bad) way to handle a method that may fail to pro-
duce an expected result is to introduce explicit error codes as possible return
values. In fact, in languages like C, code is littered with checks for such er-
ror codes, which often obscure the main application logic. Error codes are
also fragile in the face of evolution: if new error codes are added, then all
clients must be adapted to take the new codes into account. By using ex-
ceptions instead of error codes, the programmer is freed from the task of ex-
plicitly checking each return value, and the program logic stays uncluttered.
Moreover, because exceptions are classes, as new exceptional situations are
discovered, they can be subclassed; old clients will still work, although they
may provide less-specific exception handling than newer clients.

If Smalltalk did not provide exception-handling support, then the tiny
example we saw in the previous section would be written something like

6 Handling exceptions

this, using error codes:

"Pseudo−code −− luckily Smalltalk does not work like this. Without the
benefit of exception handling we must check error codes for each operation."
source := 'log.txt'.
destination := 'log−backup.txt'.
success := 1. "define two constants, our error codes"
failure := 0.
fromStream := FileDirectory default oldFileNamed: source.
fromStream ifNil: [

UIManager default inform: 'Copy failed −− could not open', source.
↑ failure "terminate this block with error code"].

toStream := FileDirectory default newFileNamed: destination.
toStream ifNil: [

fromStream close.
UIManager default inform: 'Copy failed −− could not open', destination.
↑ failure].

contents := fromStream contents.
contents ifNil: [

fromStream close.
toStream close.
UIManager default inform: 'Copy failed −− source file has no contents'.
↑ failure].

result := toStream nextPutAll: contents.
result ifFalse: [

fromStream close.
toStream close.
UIManager default inform: 'Copy failed −− could not write to ', destination.
↑ failure].

fromStream close.
toStream close.
↑ success.

What a mess! Without exception handling, we must explicitly check the re-
sult of each operation before proceeding to the next. Not only must we check
error codes at each point that something might go wrong, but we must also
be prepared to cleanup any operations performed up to that point and abort
the rest of the code.

1.5 Specifying which Exceptions will be Handled

In Smalltalk, exceptions are, of course, objects. In Pharo, an ex-
ception is an instance of an exception class which is part of a hi-
erarchy of exception classes. For example, because the exceptions
FileDoesNotExistException, FileExistsException and CannotDeleteFileException are
special kinds of FileStreamException, they are represented as subclasses of

Signaling an exception 7

Figure 1.1: A small part of the Pharo exception hierarchy.

FileStreamException, as shown in Figure 1.1. This notion of “specialization”
lets us associate an exception handler with a more or less general exceptional
situation. So, we can write:

[...] on: Error do: [...]
[...] on: FileStreamException do: [...]
[...] on: FileDoesNotExistException do: [...]

The class FileStreamException adds information to class Exception to
characterize the specific abnormal situation it describes. Specifically,
FileStreamException defines the fileName instance variable, which contains the
name of the file that signaled the exception. The root of the exception class
hierarchy is Exception, which is a direct subclass of Object.

Two key messages are involved in exception handling: on:do:, which, as
we have already seen, is sent to blocks to set an exception handler, and signal,
which is sent to subclasses of Exception to signal that an exception has oc-
curred.

1.6 Signaling an exception

To signal an exception1, you only need to create an instance of the excep-
tion class, and to send it the message signal, or signal: with a textual descrip-
tion. The class Exception class provides a convenience method signal, which
creates and signals an exception. So, here are two equivalent ways to signal
a ZeroDivide exception:

1Synonyms are to “raise” or to “throw” an exception. Since the vital message is called signal,
we use that terminology exclusively in this chapter.

8 Handling exceptions

ZeroDivide new signal.
ZeroDivide signal. "class−side convenience method does the same as above"

You may wonder why it is necessary to create an instance of an exception
in order to signal it, rather than having the exception class itself take on
this responsibility. Creating an instance is important because it encapsulates
information about the context in which the exception was signaled. We can
therefore have many exception instances, each describing the context of a
different exception.

When an exception is signaled, the exception handling mechanism
searches in the execution stack for an exception handler associated with the
class of the signaled exception. When a handler is encountered (i.e., the mes-
sage on:do: is on the stack), the implementation checks that the exceptionClass
is a superclass of the signaled exception, and then executes the handlerAction
with the exception as its sole argument. We will see shortly some of the ways
in which the handler can use the exception object.

When signaling an exception, it is possible to provide information spe-
cific to the situation just encountered, as illustrated in the code below. For
example, if the file to be opened does not exist, the name of the non-existent
file can be recorded in the exception object:

StandardFileStream class»oldFileNamed: fileName
"Open an existing file with the given name for reading and writing. If the name has no

directory part, then default directory will be assumed. If the file does not exist, an
exception will be signaled. If the file exists, its prior contents may be modified or
replaced, but the file will not be truncated on close."

| fullName |
fullName := self fullName: fileName.
↑(self isAFileNamed: fullName)

ifTrue: [self new open: fullName forWrite: true]
ifFalse: ["File does not exist..."

(FileDoesNotExistException new fileName: fullName) signal]

The exception handler may make use of this information to recover from
the abnormal situation. The argument ex in an exception handler [:ex | ...] will
be an instance of FileDoesNotExistException or of one of its subclasses. Here the
exception is queried for the filename of the missing file by sending it the
message fileName.

| result |
result := [(StandardFileStream oldFileNamed: 'error42.log') contentsOfEntireFile]

on: FileDoesNotExistException
do: [:ex | ex fileName , ' not available'].

Transcript show: result; cr

How breakpoints are Implemented 9

Every exception has a default description that is used by the develop-
ment tools to report exceptional situations in a clear and comprehensible
manner. To make the description available, all exception objects respond to
the message description. Moreover, the default description can be changed by
sending the message messageText: aDescription, or by signaling the exception
using signal: aDescription.

Another example of signaling occurs in the doesNotUnderstand: mecha-
nism, a pillar of the reflective capabilities of Smalltalk. Whenever an object is
sent a message that it does not understand, the VM will (eventually) send it
the message doesNotUnderstand: with an argument representing the offending
message. The default implementation of doesNotUnderstand:, defined in class
Object, simply signals a MessageNotUnderstood exception, causing a debugger
to be opened at that point in the execution.

The doesNotUnderstand: method illustrates the way in which exception-
specific information, such as the receiver and the message that is not un-
derstood, can be stored in the exception, and thus made available to the
debugger.

Object»doesNotUnderstand: aMessage
"Handle the fact that there was an attempt to send the given message to the receiver

but the receiver does not understand this message (typically sent from the machine
when a message is sent to the receiver and no method is defined for that selector).
"

MessageNotUnderstood new
message: aMessage;
receiver: self;
signal.
↑ aMessage sentTo: self.

That completes our description of how exceptions are used. The remain-
der of this chapter discusses how exceptions are implemented, and adds
some details that are relevant only if you define your own exceptions.

1.7 How breakpoints are Implemented

As we discussed in the Debugger chapter of Pharo By Example, the usual way
of setting a breakpoint within a Smalltalk method is to insert the message-
send self halt into the code. The method halt, implemented in Object, uses
exceptions to open a debugger at the location of the breakpoint; it is defined
as follows:

10 Handling exceptions

Object»halt
"This is the typical message to use for inserting breakpoints during
debugging. It behaves like halt:, but does not call on halt: in order to
avoid putting this message on the stack. Halt is especially useful when
the breakpoint message is an arbitrary one."
Halt signal

Halt is a direct subclass of Exception. A Halt exception is resumable, which
means that it is possible to continue execution after a Halt is signaled.

Halt overrides the defaultAction method, which specifies the action to per-
form if the exception is not caught (i.e., there is no exception handler for Halt
anywhere on the execution stack):

Halt»defaultAction
"No one has handled this error, but now give them a chance to decide
how to debug it. If no one handles this then open debugger
(see UnhandedError−defaultAction)"
UnhandledError signalForException: self

This code signals a new exception, UnhandledError, that conveys the idea
that no handler is present. The defaultAction of UnhandledError is to open a de-
bugger:

UnhandledError»defaultAction
"The current computation is terminated. The cause of the error should be logged or

reported to the user. If the program is operating in an interactive debugging
environment the computation should be suspended and the debugger activated."

↑ ToolSet debugError: exception.

A few messages later, the debugger opens:

StandardToolSet»debug: aProcess context: aContext label: aString contents: contents
fullView: aBool

↑ Debugger openOn: aProcess context: aContext label: aString contents: contents
fullView: aBool

1.8 How handlers are found

We will now take a look at how exception handlers are found and fetched
from the execution stack when an exception is signaled. However, before
we do this, we need to understand how the control flow of a program is
internally represented in the virtual machine.

At each point in the execution of a program, the execution stack of the
program is represented as a list of activation contexts. Each activation con-
text represents a method invocation and contains all the information needed

How handlers are found 11

for its execution, namely its receiver, its arguments, and its local variables. It
also contains a reference to the context that triggered its creation, i.e., the ac-
tivation context associated with the method execution that sent the message
that created this context. In Pharo, the class MethodContext models this infor-
mation. The references between activation contexts link them into a chain:
this chain of activation contexts is Smalltalk’s execution stack.

Actually, there are two kinds of activation context in Pharo: methodContext
s and blockContexts: the latter are used to represent the execution of blocks.
They have a common superclass ContextPart. We will ignore this detail for
now.

Suppose that we attempt to open a FileStream on a non-existent file from
a doIt. A FileDoesNotExistException will be signaled, and the execution stack
will contain MethodContexts for doIt, oldFileNamed:, and signal, as shown in Fig-
ure 1.2.

Figure 1.2: A Pharo execution stack.

Since everything is an object in Smalltalk, we would expect method con-
texts to be objects. However, some Smalltalk implementations use the native
C execution stack of the virtual machine to avoid creating objects all the time.
The current Pharo virtual machine does actually use full Smalltalk objects all
the time; for speed, it recycles old method context objects rather than creat-
ing a new one for each message-send.

When we send aBlock on: ExceptionClass do: actionHandler , we intend to as-
sociate an exception handler (actionHandler) with a given class of exceptions
(ExceptionClass) for the activation context of the protected block aBlock . This
information is used to identify and execute actionHandler whenever an excep-
tion of an appropriate class is signaled; actionHandler can be found by travers-
ing the stack starting from the top (the most resent message-send) and work-
ing down to the context that sent the on:do: message.

If there is no exception handler on the stack, the message defaultAction will

12 Handling exceptions

be sent either by ContextPart»handleSignal: or by UndefinedObject»handleSignal:.
The latter is associated with the bottom of the stack, and is defined as fol-
lows:

UndefinedObject»handleSignal: exception
"When no more handler (on:do:) context is left in the sender chain, this gets called.

Return from signal with default action."
↑ exception resumeUnchecked: exception defaultAction

The message handleSignal: is sent by Exception»signal.

When an exception E is signaled, the system identifies and fetches the
corresponding exception handler by searching down the stack as follows:

1. Look in the current activation context for a handler, and test if that
handler canHandleSignal: E.

2. If no handler is found and the stack is not empty, go down the stack
and return to step 1.

3. If no handler is found and the stack is empty, then send defaultAction to
E. The default implementation in the Error class leads to the opening
of a debugger.

4. If the handler is found, send it value: E.

Nested Exceptions. Exception handlers are outside of their own scope.
This means that if an exception is signaled from within an exception han-
dler — what we call a nested exception — a separate handler must be set to
catch the nested exception.

Here is an example where one on:do: message is the receiver of another
one; the second will catch errors signaled by the handler of the first:

result := [[Error signal: 'error 1']
on: Exception
do: [Error signal: 'error 2']]

on: Exception
do: [:ex | ex description].

result −→ 'Error: error 2'

Without the second handler, the nested exception will not be caught, and
the debugger will be invoked.

An alternative would be to specify the second handler within the first
one:

Handling exceptions 13

result := [Error signal: 'error 1']
on: Exception
do: [[Error signal: 'error 2']

on: Exception
do: [:ex | ex description]].

result −→ 'Error: error 2'

1.9 Handling exceptions

When an exception is signaled, the handler has several choices about how to
handle it. In particular, it may:

(i) abandon the execution of the protected block, by simply specifying an
alternative result;

(ii) return an alternative result for the protected block, by sending return:
aValue to the exception object;

(iii) retry the protected block, by sending retry, or try a different block by
sending retryUsing:;

(iv) resume the protected block at the failure point, by sending resume or
resume:;

(v) pass the caught exception to the enclosing handler, by sending pass; or

(vi) resignal a different exception, by sending resignalAs: to the exception.

We will briefly look at the first three possibilities, and then we will take a
closer look at the remaining ones.

Abandon the protected block

The first possibility is to abandon the execution of the protected block, as
follows:

answer := [|result|
result := 6 * 7.
Error signal.
result "This part is never evaluated"

] on: Error
do: [:ex | 3 + 4].

answer −→ 7

The handler takes over from the point where the error is signaled, and
any code following in the original block is not evaluated.

14 Handling exceptions

Return a value with return:

A block returns the value of the last statement in the block, regardless of
whether the block is protected or not. However, there are some situations
where the result needs to be returned by the handler block. The message
return: aValue sent to an exception has the effect of returning aValue as the
value of the protected block:

result := [Error signal]
on: Error
do: [:ex | ex return: 3 + 4].

result −→ 7

The ANSI standard is not clear regarding the difference between using
do: [:ex | 100] and do: [:ex | ex return: 100] to return a value. We suggest that you
use return: since it is more intention-revealing, even if these two expressions
are equivalent in Pharo.

A variant of return: is the message return, which returns nil.

Note that, in any case, control will not return to the protected block, but
will be passed on up to the enclosing context.

6 * ([Error signal] on: Error do: [:ex | ex return: 3 + 4]) −→ 42

Retry a computation with retry and retryUsing:

Sometimes we may want to change the circumstances that led to the excep-
tion and retry the protected block. This is done by sending retry or retryUsing:
to the exception object. It is important to be sure that the conditions that
caused the exception have been changed before retrying the protected block,
or else an infinite loop will result:

[Error signal] on: Error do: [:ex | ex retry] "will loop endlessly"

Here is a better example. The protected block is re-evaluated within a
modified environment where theMeaningOfLife is properly initialized:

result := [theMeaningOfLife * 7] "error −− theMeaningOfLife is nil"
on: Error
do: [:ex | theMeaningOfLife := 6. ex retry].

result −→ 42

The message retryUsing: aNewBlock enables the protected block to be re-
placed by aNewBlock. This new block is executed and is protected with the
same handler as the original block.

Resuming execution 15

x := 0.
result := [x/x] "fails for x=0"

on: Error
do: [:ex |

x := x + 1.
ex retryUsing: [1/((x−1)*(x−2))] "fails for x=1 and x=2"

].
result −→ (1/2) "succeeds when x=3"

The following code loops endlessly:

[1 / 0] on: ArithmeticError do: [:ex | ex retryUsing: [1 / 0]]

whereas this will signal an Error:

[1 / 0] on: ArithmeticError do: [:ex | ex retryUsing: [Error signal]]

As another example, recall the file handling code we saw earlier, in which
we printed a message to the Transcript when a file is not found. Instead, we
could prompt for the file as follows:

[(StandardFileStream oldFileNamed: 'error42.log') contentsOfEntireFile]
on: FileDoesNotExistException
do: [:ex | ex retryUsing: [FileList modalFileSelector contentsOfEntireFile]]

1.10 Resuming execution

A method that signals an exception that isResumable can be resumed at the
place immediately following the signal. An exception handler may therefore
perform some action, and then resume the execution flow. This behavior is
achieved by sending resume: to the exception in the handler. The argument
is the value to be used in place of the expression that signaled the exception.
In the following example we signal and catch MyResumableTestError, which is
defined in the Tests-Exceptions category:

result := [| log |
log := OrderedCollection new.
log addLast: 1.
log addLast: MyResumableTestError signal.
log addLast: 2.
log addLast: MyResumableTestError signal.
log addLast: 3.
log]

on: MyResumableTestError
do: [:ex | ex resume: 0].

result −→ an OrderedCollection(1 0 2 0 3)

16 Handling exceptions

Here we can clearly see that the value of MyResumableTestError signal is the
value of the argument to the resume: message.

The message resume is equivalent to resume: nil.

The usefulness of resuming an exception is illustrated by the class Installer
, which implements an automatic package loading mechanism. When in-
stalling packages, warnings may be signaled. Warnings should not be con-
sidered fatal errors, so the installer should simply ignore the warning and
continue installing.

Installer»installQuietly: packageNameCollectionOrDetectBlock
self package: packageNameCollectionOrDetectBlock.
[self install] on: Warning do: [:ex | ex resume].

Another situation where resumption is useful is when you want to ask
the user what to do. For example, suppose that we were to define a class
ResumableLoader with the following method:

ResumableLoader»readOptionsFrom: aStream
| option |
[aStream atEnd]

whileFalse: [option := self parseOption: aStream.
"nil if invalid"
option isNil

ifTrue: [InvalidOption signal]
ifFalse: [self addOption: option]].

aStream close

If an invalid option is encountered, we signal an InvalidOption exception. The
context that sends readOptionsFrom: can set up a suitable handler:

ResumableLoader»readConfiguration
| stream |
stream := self optionStream.
[self readOptionsFrom: stream]

on: InvalidOption
do: [:ex | (UIManager default confirm: 'Invalid option line. Continue loading?')

ifTrue: [ex resume]
ifFalse: [ex return]].

stream close

Depending on user input, the handler in readConfiguration might return nil
, or it might resume the exception, causing the signal message send in
readOptionsFrom: to return and the parsing of the options stream to continue.

Note that InvalidOption must be resumable; it suffices to define it as a sub-
class of Exception.

Resuming execution 17

Example: Deprecation

Deprecation offers a case study of a mechanism built using resumable excep-
tions. Deprecation is a software re-engineering pattern that allows us to
mark a method as being “deprecated”, meaning that it may disappear in
a future release and should not be used by new code. In Pharo, a method
can be marked as deprecated as follows:

Utilities class»convertCRtoLF: fileName
"Convert the given file to LF line endings. Put the result in a file with the extention '.lf'"

self deprecated: 'Use ''FileStream convertCRtoLF: fileName'' instead.'
on: '10 July 2009' in: #Pharo1.0 .

FileStream convertCRtoLF: fileName

When the message convertCRtoLF: is sent, if the raiseDeprecationWarnings
preference is true, then a pop-up window is displayed with a notification

and the programmer may resume the application execution; this is shown in
Figure 1.3.

Figure 1.3: Sending a deprecated message.

Deprecation is implemented in Pharo in just a few steps. First, we
define Deprecation as a subclass of Warning. It should have some instance
variables to contain information about the deprecation: in Pharo these are
methodReference, explanationString, deprecationDate and versionString; we therefore

18 Handling exceptions

need to define an instance-side initialization method for these variables, and
a class-side instance creation method that sends the corresponding message.

When we define a new exception class, we should consider overriding
isResumable, description, and defaultAction. In this case the inherited implemen-
tations of the first two methods are fine:

• isResumable is inherited from Exception, and answers true;

• description is inherited from Exception, and answers an adequate textual
description.

However, it is necessary to override the implementation of defaultAction,
because we want that to depend on some preferences. Here is Pharo’s imple-
mentation:

Deprecation»defaultAction
Log ifNotNil: [:log| log add: self].
Preferences showDeprecationWarnings ifTrue:

[Transcript nextPutAll: explanationString; cr; flush].
Preferences raiseDeprecatedWarnings ifTrue:

[super defaultAction]

The first preference simply causes a warning message to be written on
the Transcript. The second preference asks for an exception to be signaled,
which is accomplished by super-sending defaultAction.

We also need to implement some convenience methods in Object, like this
one:

Object»deprecated: anExplanationString on: date in: version
(Deprecation

method: thisContext sender method
explanation: anExplanationString
on: date
in: version) signal

1.11 Passing exceptions on

To illustrate the remaining possibilities for handling exceptions, we will look
at how to implement a generalization of the perform: method. If we send
perform: aSymbol to an object, this will cause the message named aSymbol to
be sent to that object:

5 perform: #factorial −→ 120 "same as: 5 factorial"

Several variants of this method exist. For example:

Passing exceptions on 19

1 perform: #+ withArguments: #(2) −→ 3 "same as: 1 + 2"

These perform:-like methods are very useful for accessing an interface dynam-
ically, since the messages to be sent can be determined at run-time.

One message that is missing is one that will send a cascade of unary mes-
sages to a given receiver. A simple and naive implementation is:

Object»performAll: selectorCollection
selectorCollection do: [:each | self perform: each] "aborts on first error"

This method could be used as follows:

Morph new performAll: #(#activate #beTransparent #beUnsticky)

However, there is a complication. There might be a selector in the collec-
tion that the object does not understand (such as #activate). We would like
to ignore such selectors and continue sending the remaining messages. The
following implementation seems to be reasonable:

Object»performAll: selectorCollection
selectorCollection do: [:each |

[self perform: each]
on: MessageNotUnderstood
do: [:ex | ex return]] "also ignores internal errors"

On closer examination we notice another problem. This handler will not
only catch and ignore messages not understood by the original receiver, but
also any messages sent but not understood in methods for messages that are
understood! This will hide programming errors in those methods, which is
not our intent. To fix this, we need our handler to analyze the exception to
see if it was indeed caused by the attempt to perform the current selector.
Here is the correct implementation.

Method 1.1: Object»performAll:
Object»performAll: selectorCollection

selectorCollection do: [:each |
[self perform: each]

on: MessageNotUnderstood
do: [:ex | (ex receiver == self and: [ex message selector == each])

ifTrue: [ex return]
ifFalse: [ex pass]]] "pass internal errors on"

This has the effect of passing on MessageNotUnderstood errors to the sur-
rounding context when they are not part of the list of messages we are per-
forming. The pass message will pass the exception on to the next applicable
handler in the execution stack.

20 Handling exceptions

If there is no next handler on the stack, the defaultAction message is sent
to the exception instance. The pass action does not modify the sender chain
in any way — but the handler that control is passed to may do so. Like the
other messages discussed in this section, pass is special — it never returns to
the sender.

The goal of this section has been to demonstrate the power of exceptions.
It should be clear that while you can do almost anything with exceptions, the
code that results not is always easy to understand. There is often a simpler
way to get he same effect without exceptions; see method 1.2 on page 28 for
a better way to implement performAll:.

1.12 Resending exceptions

Now suppose that in our performAll: example we no longer want to ignore
selectors not understood by the receiver, but instead we want to consider
an occurrence of such a selector as an error. However, we want it to be sig-
naled as an application-specific exception, let’s say InvalidAction, rather than
the generic MessageNotUnderstood. In other words, we want the ability to “res-
ignal” a signaled exception as a different one.

It might seem that the solution would simply be to signal the new ex-
ception in the handler block. The handler block in our implementation of
performAll: would be:

[:ex | (ex receiver == self and: [ex message selector == each])
ifTrue: [InvalidAction signal] "signals from the wrong context"
ifFalse: [ex pass]]

A closer look reveals a subtle problem with this solution, however.
Our original intent was to replace the occurrence of MessageNotUnderstood
with InvalidAction. This replacement should have the same effect as if In-

validAction were signaled at the same place in the program as the original
MessageNotUnderstood exception. Our solution signals InvalidAction in a differ-
ent location. The difference in locations may well lead to a difference in the
applicable handlers.

To solve this problem, resignaling an exception is a special action han-
dled by the system. For this purpose, the system provides the message
resignalAs:. The correct implementation of a handler block in our performAll:
example would be:

[:ex | (ex receiver == self and: [ex message selector == each])
ifTrue: [ex resignalAs: InvalidAction] "resignals from original context"
ifFalse: [ex pass]]

Comparing outer with pass 21

1.13 Comparing outer with pass

The method outer is very similar to pass. Sending outer to an exception also
evaluates the enclosing handler action. The only difference is that if the
outer handler resumes the exception, then control will be returned to the
point where outer was sent, not the original point where the exception was
signaled:

passResume := [[Warning signal . 1] "resume to here"
on: Warning
do: [:ex | ex pass . 2]]

on: Warning
do: [:ex | ex resume].

passResume −→ 1 "resumes to original signal point"

outerResume := [[Warning signal . 1]
on: Warning
do: [:ex | ex outer . 2]] "resume to here"

on: Warning
do: [:ex | ex resume].

outerResume −→ 2 "resumes to where outer was sent"

1.14 Catching sets of exceptions

So far we have always used on:do: to catch just a single class of exception.
The handler will only be invoked if the exception signaled is a sub-instance
of the specified exception class. However, we can imagine situations where
we might like to catch multiple classes of exceptions. This is easy to do:

result := [Warning signal . 1/0]
on: Warning, ZeroDivide
do: [:ex | ex resume: 1].

result −→ 1

If you are wondering how this works, just have a look at the implemen-
tation of Exception class»,

Exception class», anotherException
"Create an exception set."

↑ExceptionSet new
add: self;
add: anotherException;
yourself

22 Handling exceptions

The rest of the magic occurs in the class ExceptionSet, which has a surpris-
ingly trivial implementation.

Object subclass: #ExceptionSet
instanceVariableNames: 'exceptions'
classVariableNames: ''
poolDictionaries: ''
category: 'Exceptions−Kernel'

ExceptionSet»initialize
super initialize.
exceptions := OrderedCollection new

ExceptionSet», anException
self add: anException.
↑self

ExceptionSet»add: anException
exceptions add: anException

ExceptionSet»handles: anException
exceptions do: [:ex | (ex handles: anException) ifTrue: [↑true]].
↑false

1.15 How exceptions are implemented

Let’s have a look at how exceptions are implemented at the Virtual Machine
level.

Storing Handlers. First we need to understand how the exception class
and its associated handler are stored and how this information is found at
run-time. Let’s look at the definition of the central method on:do: defined on
the class BlockClosure.

BlockClosure»on: exception do: handlerAction
"Evaluate the receiver in the scope of an exception handler."
| handlerActive |
<primitive: 199>
handlerActive := true.
↑self value

This code tells us two things: First, this method is implemented as a
primitive, which means that a primitive operation of the virtual machine
is executed when this method is invoked. VM primitives don’t normally

How exceptions are implemented 23

return: successful execution of a primitive terminates the method that con-
tains the <primitive: n > instruction, answering the result of the primitive. So,
the Smalltalk code that follows the primitive serves two purposes: it docu-
ments what the primitive does, and is available to be executed if the primi-
tive should fail. Here we see that on:do: simply sets the temporary variable
handlerActive to true, and then evaluates the receiver (which is, of course, a
block).

This is surprisingly simple, but somewhat puzzling. Where are the argu-
ments of the on:do: method stored? Let’s look at the definition of the class
MethodContext, whose instances make up the execution stack:

ContextPart variableSubclass: #MethodContext
instanceVariableNames: 'method closureOrNil receiver'
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel−Methods'

There is no instance variable here to store the exception class or the han-
dler, nor is there any place in the superclass to store them. However, note
that MethodContext is defined as a variableSubclass. This means that in addition
to the named instance variables, objects of this class have some numbered
slots. In fact, every MethodContext has a numbered slot for each argument of
the method whose invocation it represents. There are also additional num-
bered slots for the temporary variables of the method.

To verify this, you can evaluate the following piece of code:

| exception handler |
[exception := thisContext sender at: 1.
handler := thisContext sender at: 2.
1 / 0]
on: Error
do: [:ex|].
{ exception . handler } explore

The last line explores a 2-element array that contains the exception class
and the exception handler.

Finding Handlers. Now that we know where the information is stored,
let’s have a look at how it is found at runtime.

We might think that the primitive 199 is complex to write. But it too is
trivial, because primitive 199 always fails! Because the primitive always fails,
the Smalltalk body of on:do: is always executed. However, the presence of
the <primitive 199> bytecode marks the executing context in a unique way.

The source code of the primitive is found in Interpreter»
primitiveMarkHandlerMethod in the VMMaker SqueakSource project:

24 Handling exceptions

primitiveMarkHandlerMethod
"Primitive. Mark the method for exception handling. The primitive must fail after
marking the context so that the regular code is run."

self inline: false.
↑self primitiveFail

So now we know that when the method on:do: is executed, the MethodContext
that makes up the stack frame is tagged and the handler and exception class
are stored there.

Now, if an exception is signaled further up the stack, the method signal
can search the stack to find the appropriate handler:

Exception»signal
"Ask ContextHandlers in the sender chain to handle this signal.
The default is to execute and return my defaultAction."

signalContext := thisContext contextTag.
↑ thisContext nextHandlerContext handleSignal: self

ContextPart»nextHandlerContext

↑ self sender findNextHandlerContextStarting

The method findNextHandlerContextStarting is implemented as a primitive
(number 197); its body describes what it does. It looks to see if the stack
frame is a context created by the execution of the method on:do: (it just looks
to see if the primitive number is 199). If this is the case it answers with that
context.

ContextPart»findNextHandlerContextStarting
"Return the next handler marked context, returning nil if there
is none. Search starts with self and proceeds up to nil."
| ctx |
<primitive: 197>
ctx := self.
[ctx isHandlerContext ifTrue: [↑ctx].

(ctx := ctx sender) == nil] whileFalse.
↑nil

MethodContext»isHandlerContext
"is this context for method that is marked?"
↑method primitive = 199

Since the method context supplied by findNextHandlerContextStarting con-
tains all the exception-handling information, it can be examined to see if

Other kinds of Exception 25

the exception class is suitable for handling the current exception. If so, the
associated handler can be executed; if not, the look-up can continue further.
This is all implemented in the handleSignal: method.

ContextPart»handleSignal: exception
"Sent to handler (on:do:) contexts only. If my exception class (first arg) handles

exception then execute my handle block (second arg), otherwise forward this
message to the next handler context. If none left, execute exception's defaultAction
(see nil>>handleSignal:)."

| val |
(((self tempAt: 1) handles: exception) and: [self tempAt: 3]) ifFalse: [
↑ self nextHandlerContext handleSignal: exception].

exception privHandlerContext: self contextTag.
self tempAt: 3 put: false. "disable self while executing handle block"
val := [(self tempAt: 2) valueWithPossibleArgs: {exception}]

ensure: [self tempAt: 3 put: true].
self return: val. "return from self if not otherwise directed in handle block"

Notice how this method uses tempAt: 1 to access the exception class, and
ask if it handles the exception. What about tempAt: 3? That is the temporary
variable handlerActive of the on:do: method. Checking that handlerActive is true
and then setting it to false ensures that a handler will not be asked to han-
dle an exception that it signals itself. The return: message sent as the final
action of handleSignal is responsible for “unwinding” the execution stack by
removing the stack frames above self.

The full story is only slightly more complicated because there are actually
two classes of objects that make up the stack, MethodContexts, which we have
already discussed, and BlockContexts, which represent the execution of blocks.
ContextPart is their common superclass.

So, to summarize, the signal method, with minimal assistance from the vir-
tual machine, finds the context that correspond to an on:do: message with an
appropriate exception class. Because the execution stack is made up of Con-
text objects that may be manipulated just like any other object, the stack can
be shortened at any time. This is a superb example of flexibility of Smalltalk.

1.16 Other kinds of Exception

The class Exception in Pharo has ten direct subclasses, as shown in Figure 1.4.
The first thing that we notice from this figure is that the Exception hierarchy
is a bit of a mess; you can expect to see some of the details change as Pharo
is improved.

The second thing that we notice is that there are two large sub-hierarchies:

26 Handling exceptions

Figure 1.4: The whole Pharo exception hierarchy.

Error and Notification. Errors tell us that the program has fallen into some kind
of abnormal situation. In contrast, Notifications tell us that an event has
occurred, but without the assumption that it is abnormal. So, if a Notification
is not handled, the program will continue to execute. An important subclass
of Notification is Warning; warnings are used to notify other parts of the system,
or the user, of abnormal but non-lethal behavior.

The property of being resumable is largely orthogonal to the location of
an exception in the hierarchy. In general, Errors are not resumable, but 10 of
its subclasses are resumable. For example, MessageNotUnderstood is a subclass
of Error, but it is resumable. TestFailures are not resumable, but, as you would
expect, ResumableTestFailures are.

Resumability is controlled by the private Exception method isResumable.
For example:

Exception new isResumable −→ true
Error new isResumable −→ false
Notification new isResumable −→ true
Halt new isResumable −→ true
MessageNotUnderstood new isResumable −→ true

As it turns out, roughly 2/3 of all exceptions are resumable:

Exception allSubclasses size −→ 103
(Exception allSubclasses select: [:each | each new isResumable]) size −→ 66

When not to use Exceptions 27

If you declare a new subclass of exceptions, you should look in its protocol
for the isResumable method, and override it as appropriate to the semantics
of your exception.

In some situations, it will never makes sense to resume an exception. In
such a case you should signal a non-resumable subclass — either an existing
one or one of your own creation. In other situations, it will always be OK
to resume an exception, without the handler having to do anything. In fact,
this gives us another way of characterizing a notification: a Notification is a
resumable Exception that can be safely resumed them without first modifying
the state of the system. More often, it will be safe to resume an exception
only if the state of the system is first modified in some way. So, if you signal
a resumable exception, you should be very clear about what you expect an
exception handler to do before it resumes the exception.

1.17 When not to use Exceptions

Just because Pharo has exception handling, you should not conclude that it
is always appropriate to use it. Recall that in the introduction to this chapter,
we said that exception handling is for exceptional situations. So, the first rule
for using exceptions is not to use them for situations that can reasonably be
expected to occur in a normal execution.

Of course, if you are writing a library, what is normal depends on the
context in which your library is used. To make this concrete, let’s look at
Dictionary as an example: aDictionary at: aKey will signal an Error if aKey is not
present. But you should not write a handler for this error! If the logic of your
application is such that there is some possibility that the key will not be in
the dictionary, then you should instead use at: aKey ifAbsent: [remedial action].
In fact, Dictionary»at: is implemented using Dictionary»at:ifAbsent:. aCollection de-
tect: aPredicateBlock is similar: if there is any possibility that the predicate
might not be satisfied, you should use aCollection detect: aPredicateBlock ifNone:
[remedial action].

When you write methods that signal exceptions, you should consider
whether you should also provide an alternative method that takes a remedial
block as an additional argument, and evaluates it if the normal action cannot
be completed. Although this technique can be used in any programming
language that support closures, because Smalltalk uses closures for all its
control structures, it is a particularly natural one to use in Smalltalk.

Another way of avoiding exception handling is to test the precondition
of the exception before sending the message that may signal it. For example,
in method 1.1, we sent a message to an object using perform:, and handled the
MessageNotUnderstood error that might ensue. A much simpler alternative is
to check to see if the message is understood before executing the perform:

28 Handling exceptions

Method 1.2: Object»performAll: revisited
performAll: selectorCollection

selectorCollection
do: [:each | (self respondsTo: each)

ifTrue: [self perform: each]]

The primary objection to method 1.2 is efficiency. The implementation of
respondsTo: s has to lookup s in the target’s method dictionary to find out if
s will be understood. If the answer is yes, then perform: will look it up again.
Moreover, the first lookup is implemented in Smalltalk, not in the virtual
machine. If this code is in a performance-critical loop, this might be an issue.
However, if the collection of messages comes from a user interaction, the
speed of performAll: will not be a problem.

1.18 Chapter Summary

In this chapter we saw how to use exceptions to signal and handle abnormal
situations arising in our code.

• Don’t use exceptions as a control-flow mechanism. Reserve them for
notifications and for abnormal situations. Consider providing methods
that take blocks as arguments as an alternative to signaling exceptions.

• Use protectedBlock ensure: actionBlock to ensure that actionBlock will be
performed even if protectedBlock terminates abnormally.

• Use protectedBlock ifCurtailed: actionBlock to ensure that actionBlock will be
performed only if protectedBlock terminates abnormally.

• Exceptions are objects. Exceptions classes form a hierarchy with the
class Exception at the root of the hierarchy.

• Use protectedBlock on: ExceptionClass do: handlerBlock to catch exceptions
that are instances of ExceptionClass (or any of its subclasses). The han-
dlerBlock should take an exception instance as its sole argument.

• Exceptions are signaled by sending one of the messages signal or signal:.
signal: takes a descriptive string as its argument. The description of an
exception can be obtained by sending it the message description.

• You can set a breakpoint in your code by inserting the message-send
self halt. This signals a resumable Halt exception, which, by default, will
open a debugger at the point where the breakpoint occurs.

Chapter Summary 29

• When an exception is signaled, the runtime system will search up the
execution stack, looking for a handler for that specific class of excep-
tion. If none is found, the defaultAction for that exception will be per-
formed (i.e., in most cases the debugger will be opened).

• An exception handler may terminate the protected block by sending
return: to the signaled exception; the value of the protected block will
be the argument supplied to return:.

• An exception handler may retry a protected block by sending retry to
the signaled exception. The handler remains in effect.

• An exception handler may specify a new block to try by sending
retryUsing: to the signaled exception, with the new block as its argument.
Here, too, the handler remains in effect.

• Notifications are subclass of Exception with the property that they can
be safely resumed without the handler having to take any specific ac-
tion.

Acknowledgments. We gratefully acknowledge Vassili Bykov for the raw
material he provided. We also thank Paolo Bonzini, the main developer of
GNU Smalltalk, for the Smalltalk implementations of ensure: and ifCurtailed:.

	Handling exceptions
	Ensuring execution
	Handling non-local returns
	Exception handlers
	Error codes --- don't do this!
	Specifying which Exceptions will be Handled
	Signaling an exception
	How breakpoints are Implemented
	How handlers are found
	Handling exceptions
	Resuming execution
	Passing exceptions on
	Resending exceptions
	Comparing outer with pass
	Catching sets of exceptions
	How exceptions are implemented
	Other kinds of Exception
	When not to use Exceptions
	Chapter Summary

